Showing posts with label instrumentation. Show all posts
Showing posts with label instrumentation. Show all posts

Thursday, July 10, 2008

What are Pressure Transmitters

Pressure transducers are devices that convert the mechanical force of applied pressure into electrical energy. This electrical energy becomes a signal output that is linear and proportional to the applied pressure. Pressure transducers are very similar to pressure sensors and transmitters. In fact, transducers and transmitters are nearly synonymous. The difference between them is the kind of electrical signal each sends. A transducer sends a signal in volts (V) or millivolt per volt (mV/V), and a transmitter sends signals in milliamps (mA).

Both transmitters and transducers convert energy from one form to another and give an output signal. This signal goes to any device that interprets and uses it to display, record or alter the pressure in the system. These receiving devices include computers, digital panel meters, chart recorders and programmable logic controllers. There are a wide variety of industries that use pressure transducers and transmitters for various applications. These include, but are not limited to, medical, air flow management, factory automation, HVAC and refrigeration, compressors and hydraulics, aerospace and automotive.

There are important things to consider when deciding what kind of pressure transducer to choose. The first consideration is the kind of connector needed to physically connect the transducer to a system. There are many kinds of connectors for different uses, including bulletnose and submersible connectors, which have unique applications. Another important part is the internal circuitry of the transducer unit, which is housed by a "can" that provides protection and isolates the electronics. This can be made of stainless steel or a blend of composite materials and stainless steel. The various degrees of protection extend from nearly no protection (an open circuit board) to a can that is completely submersible in water. Other kinds of enclosures safeguard the unit in hazardous areas from explosions and other dangers.

The next thing to consider is the sensor, which is the actual component that does the work of converting the physical energy to electrical energy. The component that alters the signal from the sensor and makes it suitable for output is called the signal conditioning circuitry. The internal circuitry must be resistant to harmful external energy like radio frequency interference, electromagnetic interference and electrostatic discharge. These kinds of interferences can cause incorrect readings, and are generally to be avoided when doing readings. Overall, pressure transducers are well-performing and high-accuracy devices that make life easier for many industries.

Tuesday, July 08, 2008

What are Temperature Transmitters

Temperature measurement using modern scientific thermometers and temperature scales goes back at least as far as the early 18th century, when Gabriel Fahrenheit adapted a thermometer (switching to mercury) and a scale both developed by Ole Christensen Røemer. Fahrenheit's scale is still in use, alongside the Celsius scale and the Kelvin scale.Many methods have been developed for measuring temperature. Most of these rely on measuring some physical property of a working material that varies with temperature. One of the most common devices for measuring temperature is the glass thermometer. This consists of a glass tube filled with mercury or some other liquid, which acts as the working fluid. Temperature increases cause the fluid to expand, so the temperature can be determined by measuring the volume of the fluid. Such thermometers are usually calibrated, so that one can read the temperature, simply by observing the level of the fluid in the thermometer. Another type of thermometer that is not really used much in practice, but is important from a theoretical standpoint is the gas thermometer.

Temperature transmitters, RTD, convert the RTD resistance measurement to a current signal, eliminating the problems inherent in RTD signal transmission via lead resistance. Errors in RTD circuits (especially two and three wire RTDs) are often caused by the added resistance of the leadwire between the sensor and the instrument. Transmitter input, specifications, user interfaces, features, sensor connections, and environment are all important parameters to consider when searching for temperature transmitters, RTD.Transmitter input specifications to take into consideration when selecting temperature transmitters, RTD include reference materials, reference resistance, other inputs, and sensed temperature. Choices for reference material include platinum, nickel or nickel alloys, and copper. Platinum is the most common metal used for RTDs - for measurement integrity platinum is the element of choice. Nickel and nickel alloys are very commonly used metal. They are economical but not as accurate as platinum. Copper is occasionally used as an RTD element. Its low resistivity forces the element to be longer than a platinum element. Good linearity and economical. Upper temperature range typically less than 150 degrees Celsius. Gold and Silver are other options available for RTD probes - however their low resistivity and higher costs make them fairly rare, Tungsten has high resistivity but is usually reserved for high temperature work. When matching probes with instruments - the reference resistance of the RTD probe must be known. The most standard options available include 10 ohms, 100 ohms, 120 ohms, 200 ohms, 400 ohms, 500 ohms, and 1000 ohms. Other inputs include analog voltage, analog current, and resistance input. The temperature range to be sensed and transmitted is important to consider.Important transmitter specifications to consider when searching for temperature transmitters, RTD, include mounting and output. Mounting styles include thermohead or thermowell mounting, DIN rail mounting, and board or cabinet mounting. Common outputs include analog current, analog voltage, and relay or switch output. User interface choices include analog front panel, digital front panel, and computer interface. Computer communications choices include serial and parallel interfaces. Common features for temperature transmitters, RTD, include intrinsically safe, digital or analog display, and waterproof or sealed. Sensor connections include terminal blocks, lead wires, screw clamps or lugs, and plug or quick connect. An important environmental parameter to consider when selecting temperature transmitters, RTD, is the operating temperature.

Tuesday, May 20, 2008

Our Deadwieght Tester


Our Budenberg brand hydraulic deadweight tester is used to calibrate various pressure gauges ranging up to thousands of Psi of pressure. Standard weights are used with graduation on how much they are lifted up by the hydraulic medium to indicate great amount of pressure. Two gauges are on the said tester. One is the standard and the is the one to be tested and calibrated. Other hydraulic equipment or instrument can be attached aside from the said gauges to indicate and test their accuracy and capability. Many digital deadweight testers are now available in the market which can indicate pressures with very high accuracy unlike our obsolete pure analog tester. But it does show how the principle of deadweight testing and hydraulic systems work.